Generalized Hyers-Ulam Stability of the Second-Order Linear Differential Equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyers-ulam stability of exact second-order linear differential equations

* Correspondence: baak@hanyang. ac.kr Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea Full list of author information is available at the end of the article Abstract In this article, we prove the Hyers-Ulam stability of exact second-order linear differential equations. As a consequence, we show the Hyers-Ulam stability of the fo...

متن کامل

Generalized Hyers-Ulam Stability of the Second-Order Linear Differential Equations

The stability problem of functional equations started with the question concerning stability of group homomorphisms proposed by Ulam 1 during a talk before a Mathematical Colloquium at the University of Wisconsin, Madison. In 1941, Hyers 2 gave a partial solution of Ulam’s problem for the case of approximate additive mappings in the context of Banach spaces. In 1978, Rassias 3 generalized the t...

متن کامل

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Hyers–ulam Stability of Linear Differential Equations with Vanishing Coefficients

We establish the Hyers-Ulam stability of certain first-order linear differential equations where the coefficients are allowed to vanish. We then extend these results to higher-order linear differential equations with vanishing coefficients that can be written with these first-order factors. AMS (MOS) Subject Classification. 34A30, 34A05, 34D20.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics

سال: 2011

ISSN: 1110-757X,1687-0042

DOI: 10.1155/2011/813137